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Abstract. An analytic expression is obtained for the free energy of fermions bound in an 
anisotropic harmonic potential in the presence of an arbitrary magnetic field, at a finite 
temperature. The specific heat and the magnetic moment are readily calculated. Our results 
consist of two parts, a steady part and an oscillatory one. The latter is similar to the well 
known de Haas-van Alphen oscillation, but persists in the absence of a magnetic field. 
Applications of our results to the nuclear shell model and surface effects of solids are 
briefly discussed. 

1. Introduction 

Exactly soluble models often lead to qualitative and useful results, although they may 
not be accurate enough quantitatively. One of the most familiar and widely used 
models in physics as well as physical chemistry is that of the harmonic oscillator 
(Moshinsky 1969). The shell model is certainly a cornerstone in modern nuclear 
physics. A harmonic oscillator system has been used with enormous success to model 
the nuclear vibrational and electronic motions in complex molecular systems and to 
provide a basis for interpreting molecular spectra, chemical kinetics, and both inter- 
and intramolecular energy transfer phenomena. 

The Schrodinger equation for systems with either isotropic or anisotropic harmonic 
oscillation potentials without magnetic field is soluble exactly, and it is also well known 
that the energy levels of an electron in the absence of potential barrier are quantised 
into Landau levels by an external magnetic field. The problem of the combination of 
isotropic harmonic potential and magnetic field was solved by Papadopoulos (1971) 
and Chanmugam et al (1972). Later the results were extended to an anisotropic 
harmonic potential (Datta and Richardson 1977) and an arbitrary quadratic potential 
(Davies 1985). The energy eigenvalues of the systems mentioned above are found to 
be those of an anisotropic harmonic oscillator in the absence of magnetic field, with 
frequencies that depend on the original natural frequencies and the applied magnetic 
field. This simple model has been applied to the calculations of Kemp’s magneto- 
emission process (Kemp 1970) in magnetic white dwarfs (Chanmugam ef a1 1972) and 
the magneto-optical absorption spectroscopy and Faraday effect (Datta and Richardson 
1977). 

In the early work by Papadopoulos (1971), Boltzmann statistics are used to evaluate 
the partition function of a canonical ensemble of harmonically bound particles, which 
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is then applied to the discussion of the magnetisation of an ionic lattice. Zero- 
temperature Fermi statistics was also considered by Papadopoulos and the steady part 
of the nuclear magnetisation in the shell model obtained. 

The purpose of this paper is to extend the Fermi statistics of the system to finite 
temperature. As we shall soon see, apart from a steady term in the free energy, there 
is a de Haas-van Alphen-like oscillatory term, which even persists when the applied 
magnetic field vanishes. 

The technique that we shall employ is the Sondheimer-Wilson (sw) Laplace 
transform method (Sondheimer and Wilson 1951), which relates Boltzmann statistics 
to Fermi statistics by the Laplace transform. In appendix 1, we present an alternative 
derivation of the sw result-which we consider is more physically appealing-as well 
as a discussion of the same. 

2. The free energy 

First of all we shall review the basic features of a harmonically bound fermion in a 
uniform magnetic field. The Hamiltonian of this system is the following: 

+ 4 M ( w : x 2 + w : y 2 + w : z 2 ) -  y S . B  

where V x A  = B  is the magnetic field and oriented in an arbitrary direction, w I ,  w 2  
and w 3  are the natural frequencies of the oscillator, M and e are the mass and the 
charge of the fermion, S is the spin of the fermion and y is the gyromagnetic ratio. 

It has been shown (Davies 1985) that the eigenenergies of Hamiltonian (1) without 
the last spin-dependent term are, in general, 

E,,, = ( ~ + f ) h n ,  + ( m  +;)ha2+ ( n  +;)ha,. ( 2 )  

Here 1, m, n = 0, 1,2, . . . , a,, Cl, and a3 are the eigenfrequencies which depend on the 
natural frequencies, and on both the magnitude and direction of the magnetic field. 
Needless to say Ri(i  = 1,2,3)  must approach wi  when the magnetic field goes to zero. 
In the case wI = w 2  = w 3  = w, where we have an isotropic harmonic oscillator, the 
eigenfrequencies can be determined as follows: = ( U * +  u : ) " ~  f w L ,  a3 = w,  where 
w L =  e B / 2 M C  is the Larmor frequency and the direction of the magnetic field has 
been chosen to be the z axis. 

It is easy to extend Davies' result to the case of fermions with arbitrary spin s / 2 ,  
where s is a positive odd integer. The eigenenergies of Hamiltonian (1) are the 
following: 

E I m n c  = E l m ,  - YSBB (3) 
where SB is the spin component along the direction of B, S B = ( - s / 2 ) h ,  ( - s / 2 +  
I ) % ,  . . ., (s/2)h and B = IBI. 

As a direct consequence of (3) ,  the Boltzmann partition function of a canonical 
ensemble of such systems can be written as 

(4) Z(P)  = & ( P ,  al)zl(P, n2)zl(P, 0 3 ) Q . A 3 )  

Z,(P, w )  = [2 sinh(P%w/2)]-' 

where P = 1/ kT is the inverse temperature and 

( 5 )  
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is the partition function of a one-dimensional harmonic 
(Wilson 1965). Q5(P)  is a factor introduced by spin: 

I \ / 2 ) h  

OAP)= C exp(P&B) 
S g =  ( - \ / 2  1 h 

939 

oscillator with frequency w 

where ps= yh. 
The free energy of this ensemble with Fermi-Dirac statistics can be evaluated from 

the known Boltzmann partition function by the Sondheimer- Wilson Laplace transform 
technique (1951), which is discussed below and in appendix 1.  

If one defines a function 4( E )  by 

or 

where the real number C is chosen such that every singular point of Z ( p ) / p 2  stays 
on the left-hand side of C, then the Fermi-Dirac free energy is given by 

Here Land L-I in (7) and (8) denote the Laplace transform and its inverse, respectively, 
f ( E )  is the Fermi-Dirac distribution function: 

where p is the Fermi energy, which is determined by the number of particles N. As 
we shall see later (equation (A1.7)), the second derivative of the function 4 ( E )  is just 
the density of states. 

The Laplace inverse in (8) can be carried out by using (4) and (5) for our system. 
The result consists of a steady part and an oscillatory part. Basically, the behaviour 
of the Boltzmann partition function near /3 = 0 determines the steady part, whereas 
the singularities along the imaginary axis of p plane introduce the oscillatory part. 
Since the orders of the singularities depend on whether (i) R I ,  $2, and $2, are all 
different, (ii) any two frequencies are equal, the third is different, (iii) three frequencies 
are all the same, separate derivations and expressions are needed for the oscillatory 
term in the above three cases. The detailed proof is put in appendix 2. In  general the 
results can be written as the following: 

4 ( E )  = 4, , (E)+ 4 d E )  (11) 
where the steady part 
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with 

a ,  =hh’(n:+n:+n:) 
b, = (p ,B) ’ [ (s  + 1 ) 2  - 11/24 

and 

7h4 ti4 
’ - 5760 574 

a --(n;‘+n~+n~)--(n:n:+R:n:+n:R:, 

b2=(psB)4[3(s+l )4-10(s+  1)’+7]/5760. (18) 

First we consider the case ( i )  where a,, R2 and R3 are all different. The oscillatory 
part is the following: 

‘ o s ( ~ ) = T  Zl (/..)z sin(/.rrfi2/al) sin(/.rrfi,/n,) 
fin, = (-1)’ R ( R , )  cos(217rE/hR,) 

hR, o: (-1)’ R(R2) C O S ( ~ / T E / ~ R ~ )  +-E- 
8 (IT)’ sin(l.rrR3/R2) sin(lnR,/R2) 

where the R factors are due to spin: 

Thus we have obtained the function ‘ ( E )  for three different frequencies. The next 
thing we shall do is to use (9) to calculate the free energy. In general, the integration 
in (9) has to be carried out numerically. But if p >> kT, we are able to obtain a closed 
analytic expression, as follows (see appendix 3 for details): 

(21) F = N p  + F,,+ F,, 

where 

and 

R(R2)  cos(2/7rp/hR2) 
sinh(2.rr21kT/ hR2) sin(lrrR,/R2) sin(l.rrR,/R2) 

R(R3)  cos(21np/hR3) 
sinh(2.rr21kT/ ha3) sin( h R I / Q 3 )  sin( 17rR2/R3) 

+ 

+ 
We shall also write down the results for F,, in cases (ii) and (iii), saving the detailed 

proof in the appendices. 



Free energy for fermions in a magnetic jield 941 

When any two frequencies are equal, but differ from the third, we denote the two 
equal frequencies by R and the third by w. In this case, the oscillatory free energy 
takes the following form: 

F,,,=- - k T  ( - 1 ) l - I  R ( w  ) COS( 217rpl ho ) 
4 1 sinh(27r21kT/hw) sin2(17rR/w) 

k T  R ( R )  
'1 ,?, 1 sinh(27r21kT/hR) s i n ( h w / R )  

x { [ e G ( R ) + ~ + ( f i )  2 h R  1T cot($)] cos(%) +f i s in(%)}  

(24) 

where another spin factor is defined by 

G(R)=sin(17rp,B/hR) s in ( ( s+  1)17rpsB/hR) 
(25) hR 

s in ( shp ,B /  h R )  

In the case where R I  = R2 = R3 = R, the corresponding result is 

where 

D(R) = ( s  + 1)?+2(s  + 1) cot( F) ,,t( h ( s +  l ) p S B  
h R  

3. Discussions 

We have obtained a closed expression for the free energy of a canonical ensemble of 
anisotropic harmonic oscillators in a magnetic field by using Fermi-Dirac statistics. 
Our result consists of two parts: steady and oscillatory ones. The physical quantities 
of the system, such as specific heat, magnetic susceptibility, etc, can be calculated by 
using standard thermodynamical relations. It is straightforward, but very lengthy. We 
would rather make the following simple observations than writing down these results 
explicitly. 

Similar to the free energy, other thermodynamical quantities of the system also 
contain oscillatory terms, and  therefore show the de  Haas-van Alphen-like oscillations 
when the temperature of the magnetic field of the system varies. Since the eigenfrequen- 
cies ( C l )  reduce to the natural frequencies ( w )  when the magnetic field vanishes, this 
oscillatory behaviour of the specific heat, for instance, persists even in the absence of 
a magnetic field. 
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Because of the factor x,/sinh(lx,), where x, = 27r2kT/hRJ, j = 1,2,3,  in front of 
each oscillatory term, the oscillation amplitudes are maximum when xJ - 1 which is 

kT-O.lhRJ j = 1 , 2 , 3 .  (28) 

In the nuclear shell model, haJ - MeV, and (17) shows that the oscillation is most 
significant when T - lo9 K. The harmonic oscillator potential model considered above 
is a useful approximation when one considers the effects of the surface barrier of solids 
(Wang and  O’Connell 1986). 
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Appendix 1. An alternative derivation of the Sondheimer-Wilson results 

The original proof of sw is rather mathematical. Here we shall show how the function 
4 ( E )  is introduced physically. As we shall soon see, the second derivative of the 
function + ( E )  is just the density of states of the system. 

Consider a system with energy levels Eo< E ,  < E 2 . .  . . The Boltzmann partition 
function of a canonical ensemble of such a system is given by 

(Al . l )  

where d, is the degeneracy of the ith energy level. In terms of the density of states 
m 

g(E)  = c d , S ( E  - E , )  
, = o  

we may substitute jlm g( E )  d E  for Z:=o d , ,  if we choose E, 3 0: 

Z(P) = lox e-EPg( E )  d E  

(A1.2) 

= L p [ g ( E ) I  (A1.3) 

where Lp denotes Laplace transform with variable p. The inverse of (A1.3) is as 
follows: 

g ( E )  = L & W 3 ) 1 .  (A1.4) 

Here 15;’ is the Laplace inverse with a variable E. 
In Fermi-Dirac statistics the free energy of the ensemble is given by 

1 “  
p i = o  

F = N p  -- di  In{l +exp[P(p  - Ei)f} 

1 
P 

= N p  -- lom In(l +exp[P(p  - E ) ] ) g ( E )  dE. (A1.5) 
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If one defines 

(Al.6) 

one has the following relation: 

a24/aE2 = g(E) .  (A1.7) 

It is easy to verify the following expressions for '( E )  and its derivative a'/aE by 
combining (A1.6) and (Al.1): 

I =o 

and 
a: *= die(E-Ei)  

aE i = o  

where O(x) is the step function: 

From (A1.2), (A1.8) and (A1.9) we ..,id that, for any e0G Eo,  

( A I  3) 

(Al.9) 

(A1.lO) 

(A1.11) 

Hence 

. r x  
1 

lnIl+exp[p(cl-E)]}g(E) dE (A1.12) = - - J  P o  
which we identify as the second term in the free energy given by (A1.5). 

Combination of (A1.5) and (A1.12) gives 

(A1.13) 

Since (A1.14) is true for any e 0 6  Eo,  a special choice E ~ = O  gives the sw relation 
(equation (7)). 
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In order to see the physical meaning of & ( E )  more clearly, we now consider 
absolute zero temperature, where 

af/dE = - 6 ( ~  -pa)  (Al .  14) 

and po is the Fermi energy at absolute zero. The free energy at zero temperature, Fo 
say, is obtained by using (7) and (A1.14): 

(A1.15) 

In addition, pa can be found by using the general relation aF/ap = 0, which is now 
simply (see (A1.13) and (A1.14)) 

(Al. 16) 

Another example we shall consider here is the one we met in the text. We have 
obtained the exact expression for the function 4 ( E ) ,  for a system of anisotropic 
harmonic oscillators with an arbitrary (but uniform) magnetic field ((9)-( 13)). It 
follows from (A1.7) that the density of state of this system can be calculated by simply 
taking the second derivative of the function I$(,!?). The steady part of the density of 
state agrees with that obtained via the semiclassical expansion technique (Bhaduri and 
Ross 1971). The oscillatory part is singular, but when the energy spacing is much 
smaller than the energy scale of the problem, the Fermi energy, say, the oscillatory 
part (see (12)), is very small and can be ignored. 

Fo = NPO - 4(Po) .  

N = a&/a  E I E =&". 

Appendix 2. Proof for equations (9)-(13) 

The combination of (3), (4) and (6) gives 

(A2.1) OAP) eEp 
dpS/32 s inh(phR,/2)  s inh(phR2/2)  s inh(phR3/2) '  

To carry out the integration in (A2.1), we choose the contour shown in figure 1 
and rewrite the integral as follows: 

(A2.2) 

Figure 1. The closed contour used in the evaluation of the integral appearing in (A2.1). 
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where the second term vanishes and y is the residue of the integrand. As we shall 
soon see, the first term oscillates, whereas the third is steady. We shall start with the 
third term. 

We observe that 

x 2  13 
6 360 

X(sinhX)-' = 1 -----x4+O(x6) 

Hence 

when x + 0. 

= (s + 1)(1- d l p 2 +  d 2 p 4 )  + o ( p 6 )  when p + 0 

where d ,  and d, are given by (13)-(18). If we derive a new function by 

'(') 
Q s ( P  1 

8p2 sinh( h R , p / 2 )  sinh( hR2p/2)  sinh(hR3p/2) 

- 

(A2.3) 

(A2.4) 

(A2.5) 

from (A2.4) we know that P ( p )  vanishes when p goes to zero. Also, the last term in 
(A2.2) can be written in terms of P ( p ) :  

OAP) eEp d p  
z+o 8p2 sinh( hR,p /2)  sinh( hR2p/2)  sinh( hR3p/2)  

Since P ( p )  + 0 as p + 0, its integration along the small circle in U vanishes as S + 0. 
Furthermore, since the x axis is not a branch cut for P ( p ) ,  the integrations in opposite 
directions along the x axis cancel. So the first term on the right-hand side of (A2.6) 
is zero. The second term can be readily evaluated from the following representation 
of a r function: 

(A2.7) 

This result will show that the last term in (A2.2) reduces to the steady part q5,,, which 
is given by (12). 

Next we turn to calculate the first term in (A2.2). We begin with case (i), where 
the three frequencies in (A2.2) are all different and all singularities of the integrand 
are of the first order. 

Since sinh(hRjp/2) vanishes at pl j  =(27rl/hRj)i, where j =  1, 2, 3, and 1 = 
'1, i 2 , .  . ., the residue at PI,,,  say, is 

(A2.8) hRl  QS(P~,I)  exp[(2/.rrE/hRl + 17r)il 
16(/7r)' sin(lrrR2/Rl) sin(17rR3/R,) ' 

YI.1 = ~ 

By changing R ,  to a,, R2 and R3 to R3 and 0, in (A2.8), one obtains yl,2 and yI,3. 
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It is easy to verify that the summation of all the residues gives the oscillatory part 
of 4 ( E ) :  

*oc 3 c c Y/, ,  = 4 0 s  (A2.9) 
f = * l ] = 1  

where 4os is defined in (19). 
When any two frequencies in (A2.1) are the same, but the third is different, we 

denote the two equal frequencies by l2 and the third by w. Hence the residues at 
= 27di/hw, where 1 = *l, *2,. . ., are still given by the RHS of (A2.8), with O2, a, 

replaced by R and 0, replaced by w. The singularities of P I  = 2 d i / R R  are second 
order and the residues are 

where the prime denotes differentiation with respect to p,. 
It is straightforward to show that Q : ( p r ) / Q s ( p r )  is equal to pSBG(R)/2,  where 

G ( n )  is given by (25). Hence the function 4os( E )  in this case can be written as follows: 
*cD +m 

= c % , I +  c Y /  
/ = * I  I = * l  

=!q- ( - l ) f  R(w) c 0 ~ ( 2 / ~ E / h w )  
8 I = ~  (h)' sin'(l.rrQ/w) 

+ (g) cot( 9)] cos( z) + (5) sin( z)]. (A2.11) 

In case (iii), where all three frequencies in (A2.1) are equal, we denote this frequency 
by R. The singularities at P I  = 2 d i /  hi2 are now of the third order, so the calculations 
of the residues are more tedious, but still straightforward. The result is 

+-+--I-- (*')') (A2.12) EQXPr) 2 E  2Q:(PI) Q:(P I )  E' 
Q S ( P 1 )  PI PrQAP1) 2QAPI) 2 PI 8 * 

+- -_--- 

One can reduce QI(/3f)/2Qs(P~) to (pSB)'D(R)/8, where D(fl) is given by (27). 
Summing up all the residues, we finally obtain 

(A2.13) 
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Appendix 3. The proof of equations (14)-(16) 

Since af /dE is very close to -S( E - p )  at low temperatures ( k T c  p ) ,  the steady part 
F,, can be readily calculated from the following formula (Wilson 1965): 

To evaluate the oscillatory part F,, we need the following integration: 

I J = { o x c o s ( - h ~ ) ~ d E .  2 l ~ E  af 
(A3.2) 

We cannot use (A3.1) in this case, since the cos function oscillates around p, so 
we do  it in the following fashion: 

(A3.3) 

where Re{ } means the real part of { }. The lower limit of the integral can be replaced 
by -cx when pp = p /  kT >> 1. Then the path of the integration can be closed by the 
upper semicircle and the integral can be evaluated by the sum of the residues of the 
second-order poles at 2 = i (  n + 4) r, n = 0,1,2,  . . . . Replacing 2 by y = 2 - i( n + 4) T,  

and putting cosh 2 = i(-1)" sinh y, one obtains 

Thus 

Substituting (A3.5) with J = 1,2,3,  into 

(A3.4) 

(A3.5) 

(A3.6) 

where bo, is given by (19), we finally obtain (23). 

by (A2.11). We need another integral given by 
When only two frequencies are equal, we have to evaluate F,, using 4,,(E) given 

(A3.7) 
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We can obtain I by the following arguments. Since E does not oscillate around p, 
only s i n ( 2 h E / f i R )  on the R H S  of (A3.7) needs the above special treatment. If we 
consider the imaginary part of the RHS in (A3.3) we have 

2?r21/PAR 21rp  
Jom sin( z) -$d E = - s i n h ( 2 ~ * 1 / p h R )  

Hence when kT << p, 

I = p sin( x) 2 h E  an 8f d E  

2 T 2  lp / p h R 2 Il7p 
sinh(2.rr21/PRR) sin( x)‘ = -  

(A3.8) 

(A3.9) 

In fact, one can calculate (A3.7) by observing that I = -( f iR /25~)  aZ,/al, where I, is 
given by (A3.2), with R, replaced by R. One will find that both results agree well 
when kT K p. 

Similarly, one needs 

J = jo* E 2  cos( n) 2 h - E  af d E  

p22.rrZl/phR 2 llrp 
sinh(2rr21//3hR) ‘Os( x) = -  (A3.10) 

to calculate F,, via 4os( E )  given by (13) in the case where three frequencies are the 
same. One can also evaluate the integral J by observing that J = -( hR/277)’ a2Z,/a12. 

Combinations of (A3.9) and (A2.11), (A3.10) and (A2.13) give (24) and (26), 
respectively. 
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